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Abstract. Heat can flow from cold to hot at any phase separation even in macroscopic systems. Therefore
also Lynden-Bell’s famous gravo-thermal catastrophe must be reconsidered. In contrast to traditional
canonical Boltzmann-Gibbs statistics this is correctly described only by microcanonical statistics. Systems
studied in chemical thermodynamics (ChTh) by using canonical statistics consist of several homogeneous
macroscopic phases. Evidently, macroscopic statistics as in chemistry cannot and should not be applied
to non-extensive or inhomogeneous systems like nuclei or galaxies. Nuclei are small and inhomogeneous.
Multifragmented nuclei are even more inhomogeneous and the fragments even smaller. Phase transitions
of first order and especially phase separations therefore cannot be described by a (homogeneous) canonical
ensemble. Taking this serious, fascinating perspectives open for statistical nuclear fragmentation as test
ground for the basic principles of statistical mechanics, especially of phase transitions, without the use of
the thermodynamic limit. Moreover, there is also a lot of similarity between the accessible phase space of
fragmenting nuclei and inhomogeneous multistellar systems. This underlines the fundamental significance
for statistical physics in general.

PACS. 04.40.-b Self-gravitating systems; continuous media and classical fields in curved spacetime –
05.20.Gg Classical ensemble theory – 25.70.Pq Multifragment emission and correlations – 64.60.-i General
studies of phase transitions

1 Introduction

In 1981 Randrup and Koonin [1] proposed the statistical
(grand-canonical) decay of an excited nucleus into several
light fragments. As the grand-canonical ensemble fixes the
mean mass by an intensive control parameter, the chem-
ical potential µ, but has no information about the total
mass Mt of the decaying nucleus, this works only for frag-
ment masses Mi ¿ Mt. This touches already the central
point of the discussion to follow, the difference between in-
tensive parameters (fields) used in canonical statistics in
contrast to the mechanical extensive control parameters
used in microcanonical statistics.

The statistical multifragmentation of a hot nucleus
simultaneously into larger fragments was introduced
by [2,3] (details of the historical development of the the-
ory of statistical multifragmentation is discussed in ap-
pendix A of [4].) Of course the finiteness of the total mass
and charge is then crucial. Meanwhile statistical multi-
fragmentation developed to a powerful and successful de-
scription even of sophisticated correlations seen in nuclear
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multifragmentation, cf. also [5–8]. A presentation of its far-
reaching implications for the fundamental understanding
of statistical mechanics in general is now demanding.

Here I will give mainly the motivation. In sect. 2 I
address the general basis of statistical mechanics without
invoking the thermodynamic limit. Then I give the physi-
cal definition of entropy S, I show how phase-separation is
necessarily linked to convexities of S(E) and negative heat
capacities. In [9] I discussed in detail the general topology
of the entropy surface S(E) indicating phase transitions
in general. In sect. 3 I present shortly the application to
three characteristic phenomena: Nuclear multifragmenta-
tion, the fragmentation of small atomic clusters and finally
the fragmentation of stellar objects under large angular
momentum.

In sect. 3.1 I only discuss the implications of the new
formalism for statistical nuclear fragmentation. In this
topical issue there will be many contributions that com-
pare detailed experimental data to the predictions of the
different models for statistical multifragmentation of hot
nuclei. Here I will put the new statistics of nuclear mul-
tifragmentation into a more general perspective: I show
how, similar to nuclear fragmentation, also atomic clus-
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ters fragment with rising excitation into more and more
medium-sized fragments. In close similarity to nuclear
multifragmentation also the accessible phase space of self-
gravitating astro-physical systems splits under rising en-
ergy and/or angular momentum into various inhomoge-
neous phases of single stars, rotating multi-star systems,
and sometimes even more exotic configurations as ring
systems and others.

2 Fundamentals of thermostatistics without

thermodynamic limit

Since the beginning of thermodynamics in the first half of
the 19th century its original motivation was the descrip-
tion of steam engines and the liquid-to-gas transition of
water. Here water becomes inhomogeneous and develops
a separation of the gas phase from the liquid, i.e. water
boils. Thus, phase separations were in the focus some 170
years ago. Every child realizes phase separation by the
inter-phase surface. And every child distinguishes a solid
crystal from a liquid by the hard surface of the latter. It is
an irony of the history of statistical mechanics that phase
transitions of first order can only be signaled indirectly
by the academic construct of a Yang-Lee singularity [10].
There is no information about the necessary and charac-
teristic inter-phase surface. Of course this is because of the
use of the thermodynamic limit and the use of intensive
Lagrange parameters as control parameters.

A little later statistical mechanics was proposed by
Boltzmann [11,12] to explain the microscopic mechanical
basis of thermodynamics. Up to now it is generally be-
lieved that this is given by the Boltzmann-Gibbs canoni-
cal statistics. As traditional canonical statistics works only
for homogeneous, infinite systems, phase separations re-
main outside standard Boltzmann-Gibbs thermostatistics,
which, consequently, signal phase transitions of first order
by Yang-Lee singularities.

It is amusing that this fact that is essential for the
original purpose of thermodynamics to describe steam en-
gines was never treated completely in the past 150 years.
The system must be somewhat artificially split into (still
macroscopic and homogeneous) pieces of each individual
phase [13]. The most interesting configurations like two co-
existing phases cannot be described by a single canonical
ensemble. Important inter-phase fluctuations remain out-
side the picture, etc. Of course these are essential for the
fragmentation process. These inter-phase fluctuations are
also responsible for the negative heat capacity [14]. This is
all hidden due to the restriction to homogeneous systems
in the thermodynamic limit and the use of intensive con-
trol parameters like temperature, pressure, chemical po-
tentials etc. What may be more surprising is the fact that
the curvature of S(E) can stay convex even at the thermo-
dynamic limit. The leading volume term of S(E) follows
the Maxwell double tangent (concave hull) and has curva-
ture 0. In the intermediate energy range between the liquid
and the gas the surface contribution δ2Ssurf ∝ N2/3 > 0
is the dominant curvature. It leads to a deep intruder in
S(E) also in the thermodynamic limit.

Also the second law can rigorously be formulated only
microcanonically. Already Clausius [15–17] distinguished
between external and internal entropy generating mecha-
nisms. The second law is only related to the latter mecha-
nism [18], the internal entropy generation. Again, canon-
ical Boltzmann-Gibbs statistics is insensitive to this im-
portant difference.

For this purpose, and also to describe small systems
like fragmenting nuclei or non-extensive ones like self-
gravitating very large systems, we need a new and deeper
definition of statistical mechanics and at the heart of it,
of entropy.

2.1 What is entropy?

Entropy, S, is the characteristic entity of thermodynamics
and statistics. Its use distinguishes thermodynamics from
all other physics; therefore, its proper understanding is
essential. The understanding of entropy is sometimes ob-
scured by frequent use of the Boltzmann-Gibbs canonical
ensemble, and the thermodynamic limit. Also its relation-
ship to the second law is often beset with confusion be-
tween external transfers of entropy deS and its internal
production diS.

The main source of the confusion is of course the lack
of a clear microscopic and mechanical understanding of
the fundamental quantities of thermodynamics like heat,
external vs. internal work, temperature, and last but not
least entropy, at the times of Clausius and possibly even
today.

Clausius [15,16] defined a quantity which he first called
the “value of metamorphosis”, in German “Wert der Ver-
wandlung” in [16]. Eleven years later he [17] gave it the
name “entropy” S:

Sb − Sa =

∫ b

a

dE

T
, (1)

where T is the absolute temperature of the body when
the momentary change is done, and dE is the increment
(positive, respectively, negative) of all different forms of
energy (heat and potential) put into, respectively, taken
out of the system. (Later, however, we will learn that care
must be taken of additional constraints on other control
parameters like, e.g., the volume, see below.)

From the observation that heat does not flow from cold
to hot (see, however, sect. 2.2) he went on to enunciate the
second law as

∆S =

∮

dE

T
≥ 0, (2)

which Clausius called the “uncompensated metamorpho-
sis”. As will be worked out later, the second law as pre-
sented by eq. (2) remains valid even in cases where heat
(energy) flows during relaxation from low to higher tem-
peratures.

Prigogine [18], cf. [13], quite clearly stated that the
variation of S with time is determined by two, crucially
different, mechanisms of its changes: the flow of entropy
deS to or from the system under consideration, and its
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internal production diS. While the first type of entropy
change deS (that effected by exchange of heat deQ with
its surroundings) can be positive, negative or zero, the sec-
ond type of entropy change diS is fundamentally related
to the spontaneous internal evolution (“Verwandlungen”,
“metamorphosis” [15]) of the system, and states the uni-
versal irreversibility of spontaneous transitions. It can be
only positive or zero in any spontaneous transformation.

Clausius gives an illuminating example in [16]: When
an ideal gas suddenly streams under insulating condi-
tions from a small vessel with volume V1 into a larger
one (V2 > V1), neither its internal energy U , nor its tem-
perature changes, nor external work done, but its in-
ternal (Boltzmann) entropy Si, eq. (3), rises by ∆S =
N ln (V2/V1). Only by compressing the gas (e.g., isen-
tropically) and creating heat ∆E = E1[(V2/V1)

2/3 − 1]
(which must be finally drained) it can be brought back
into its initial state. Then, however, the entropy produc-
tion in the cycle, as expressed by integral (2), is positive
(= N ln (V2/V1)). This is also a clear example for a mi-
crocanonical situation where the entropy change by an
irreversible metamorphosis of the system is absolutely in-
ternal. It occurs during the first part of the cycle, the ex-
pansion, where there is no heat exchange with the environ-
ment and no work done, and consequently no contribution
to the integral (2). The construction by eq. (2) is correct
though artificial. After completing the cycle the Boltz-
mann entropy of the gas is of course the same as initially.
All this will become much more clear by Boltzmann’s mi-
croscopic definition of entropy, which will moreover clarify
its real statistical nature.

Boltzmann [11,12] later defined the entropy of an iso-
lated system (for which the energy exchange with the en-
vironment deQ ≡ 0) in terms of the sum of possible con-
figurations, W , which the system can assume consistent
with its constraints of given energy and volume:

S = k ∗ lnW (3)

as written on Boltzmann’s tombstone, with

W (E,N, V ) =

∫

d3N~pd3N~q

N !(2π~)3N
ε0 δ(E −H{~q, ~p }) (4)

in semi-classical approximation. E is the total energy, N
is the number of particles and V the volume. Or, more
appropriate for a finite quantum-mechanical system:

W (E,N, V ) = Tr[PE ] (5)

=
∑ all eigenstates n of H with given N , V ,

and E < En ≤ E + ε0

and ε0 ≈ the macroscopic energy resolution. This is still
up to day the deepest, most fundamental, and most sim-
ple definition of entropy. There is no need of the ther-
modynamic limit, no need of concavity, extensivity and
homogeneity. In its semi-classical approximation, eq. (4),
W (E,N, V, · · · ) simply measures the area of the sub-mani-
fold of points in the 6N -dimensional phase space (Γ -space)

with prescribed energy E, particle number N , volume
V , and some other time invariant constraints which are
here suppressed for simplicity. Because it was Planck who
coined it in this mathematical form, I will call it the
Boltzmann-Planck principle.

The Boltzmann-Planck formula has a simple but deep
physical interpretation: W or S measure our ignorance
about the complete set of initial values for all 6N mi-
croscopic degrees of freedom which are needed to spec-
ify the N -body system unambiguously [19]. To have com-
plete knowledge of the system we would need to know
(within its semi-classical approximation (4)) the initial
positions and velocities of all N particles in the system,
which means we would need to know a total of 6N val-
ues. Then W would be equal to one and the entropy, S,
would be zero. However, we usually only know the value
of a few parameters that change slowly with time, such
as the energy, number of particles, volume and so on. We
generally know very little about the positions and veloc-
ities of the particles. The manifold of all these points in
the 6N -dimensional phase space, consistent with the given
macroscopic constraints of E,N, V, · · · , is the microcanon-
ical ensemble, which has a well-defined geometrical sizeW
and, by eq. (3), a non-vanishing entropy, S(E,N, V, · · · ).
The dependence of S(E,N, V, · · · ) on its arguments deter-
mines completely thermostatics and equilibrium thermo-
dynamics.

Clearly, Hamiltonian (Liouvillean) dynamics of the
system cannot create the missing information about the
initial values —i.e. the entropy S(E,N, V, · · · ) cannot de-
crease. As has been further worked out in [20] and more
recently in [21] the inherent finite resolution of the macro-
scopic description implies an increase ofW or S with time
when an external constraint is relaxed. This is a state-
ment of the second law of thermodynamics, which requires
that the internal production of entropy be positive or zero
for every spontaneous process. The analysis of the conse-
quences of the second law by the microcanonical ensem-
ble is appropriate because, in an isolated system (which
is the one relevant for the microcanonical ensemble), the
changes in total entropy must represent the internal pro-
duction of entropy, see above, and there are no additional
uncontrolled fluctuating energy exchanges with the envi-
ronment.

2.2 The zeroth law in conventional extensive
thermodynamics

In conventional (extensive) thermodynamics thermal equi-
librium of two systems (1 and 2) is established by bringing
them into thermal contact which allows free energy ex-
change. Equilibrium is established when the total entropy

S1+2(E,E1) = S1(E1) + S2(E − E1) (6)

is maximal:

dS1+2(E,E1)|E = dS1(E1) + dS2(E − E1) = 0. (7)
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Under an energy flux∆E2→1 from 2→ 1 the total entropy
changes to lowest order in ∆E by

∆S1+2|E = (β1 − β2)∆E2→1, (8)

β = dS/dE =
1

T
. (9)

Consequently, a maximum of Stotal(E = E1+E2, E1)|E ≥
S1+2 will be approached when

sign(∆Stotal) = sign(T2 − T1) sign(∆E2→1) > 0. (10)

From here Clausius’ first formulation of the second law
follows: “Heat always flows from hot to cold”. Essential
for this conclusion is the additivity of S under the split
(eq. (6)). There are no correlations which are destroyed
when an extensive system is split. Temperature is an ap-
propriate control parameter for extensive systems.

It is further easy to see that the heat capacity of
an extensive system with S(E,N) = Ns(e = E/N) =
2S(E/2, N/2) is necessarily non-negative:

CV (E) = ∂E/∂T = − (∂S/∂E)
2

∂2S/∂E2
≥ 0. (11)

The combination of two pieces of N/2 particles each,
one at the specific energy ea = e2 − ∆e/2 and a sec-
ond at eb = e2 + ∆e/2, must lead to S(E2, N) ≥
S(Ea/2, N/2) + S(Eb/2, N/2), the simple algebraic sum
of the individual entropies, because by combining the two
pieces one normally loses information. This, however, is
for extensive systems equal to [S(Ea, N) + S(Eb, N)]/2,
thus S(E2, N) ≥ [S(Ea, N) + S(Eb, N)]/2. I.e., the en-
tropy S(E,N) of an extensive system is necessarily non-
convex, ∂2S/∂E2 ≤ 0 and eq. (11) follows. In the next sub-
section we will see that therefore extensive systems cannot
have phase transitions of first order.

2.3 No phase separation, no boiling water, without a
convex, non-extensive S(E)

At phase separation the weight eS(E)−E/T of the config-
urations with energy E in the definition of the canonical
partition sum

Z(T ) =

∫

∞

0

eS(E)−E/TdE (12)

becomes here bimodal : at the transition temperature it
has two peaks, the liquid and the gas configurations
which are separated in energy by the latent heat. Con-
sequently, S(E) must be convex (∂2S/∂E2 > 0, like
y = x2) and the weight in (12) has a minimum between
the two pure phases. Of course, the minimum can only
be seen in the microcanonical ensemble where the en-
ergy is controlled and its fluctuations forbidden. Other-
wise, the system would fluctuate between the two pure
phases by an, for macroscopic systems even macroscopic,
energy ∆E ∼ Elat ∝ N of the order of the latent heat.
Canonically, phase separations are unstable, however, not

microcanonically, and of course not in real nature. The
heat capacity is

CV (E) = ∂E/∂T = − (∂S/∂E)
2

∂2S/∂E2
< 0. (13)

I.e., the convexity of S(E) and the negative heat capac-
ity are the generic and necessary signals of phase separa-
tion [4]. It is amusing that this fact that is essential for
the original purpose of thermodynamics to describe steam
engines and boiling water seems never been really recog-
nized in the past 150 years. However, such macroscopic en-
ergy fluctuations and the resulting negative specific heat
are already early discussed in high-energy physics by Car-
litz [22].

2.3.1 Physical origin of positive curvature, the surface
tension

For short-range forces the depth of the convex intruder
into S(E) is linked to the inter-phase surface tension. This
is demonstrated by fig. 1 which shows an MMMC simula-
tion of the entropy per atom of a cluster of 1000 sodium
atoms.

At the energy e ≤ e1 the system is in the pure liquid
phase and at e ≥ e3 in the pure gas phase, of course with
fluctuations. The latent heat per atom is qlat = e3 − e1.
Attention: the curve s(e) is artifically sheared by subtract-
ing a linear function 25 + e ∗ 11.5 in order to make the
convex intruder visible. s(e) is always a steeply mono-
tonic rising function. We clearly see the global concave
(downwards bending) nature of s(e) and its convex in-
truder. Its depth is the entropy loss due to additional cor-
relations by the interfaces. It scales ∝ N−1/3. From this
one can calculate the surface tension per surface atom
σsurf/Ttr = ∆ssurf ∗ N0/Nsurf . This quantity, as well
as other relevant parameters of the transition, is given in
table 1. The double tangent (Gibbs construction) is the
concave hull of s(e). Its derivative gives the Maxwell line

Fig. 1. MMMC [4] simulation of the entropy s(e) per atom (e
in eV per atom) of a system of N0 = 1000 sodium atoms at an
external pressure of 1 atm.
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Table 1. Parameters of the liquid-gas transition of small
sodium clusters (MMMC calculation [4]) in comparison with
the bulk for a rising number N0 of atoms, Nsurf is the average

number of surface atoms (estimated here as
∑

N
2/3

cluster) of all
clusters with Ni ≥ 2 together. σ/Ttr = ∆ssurf ∗N0/Nsurf cor-
responds to the surface tension. Its bulk value is adjusted to
agree with the experimental values of the as parameter which
we used in the liquid-drop formula for the binding energies of
small clusters, cf. Brechignac et al. [23], and which are used in
this calculation [4] for the individual clusters.

N0 200 1000 3000 Bulk

Ttr [K] 940 990 1095 1156

qlat [eV] 0.82 0.91 0.94 0.923

Na sboil 10.1 10.7 9.9 9.267

∆ssurf 0.55 0.56 0.44

Nsurf 39.94 98.53 186.6 ∞

σ/Ttr 2.75 5.68 7.07 7.41

in the caloric curve T (e) at Ttr. In the thermodynamic
limit the intruder would disappear and s(e) would ap-
proach the double tangent from below. Nevertheless, even
there, the probability of configurations with phase sepa-
rations are suppressed by the (infinitesimal small) factor

e−N2/3

relative to the pure phases and the distribution
remains strictly bimodal in the canonical ensemble. The
region e1 < e < e3 of phase separation gets lost. Conse-
quently, the intruder can only be seen when the system is
insolated (thermo-flask) and the energy can be controlled.
I.e., in the microcanonical situation.

The existence of the negative heat capacity at phase
separation has a surprising but fundamental consequence:
Combining two systems with negative heat capacity they
will relax with a flow of energy from the lower to the
higher temperature! This is consistent with the naive pic-
ture of an energy equilibration. Thus Clausius’ “energy
flows always from hot to cold”, i.e. the dominant control-
role of the temperature in thermostatistics, as emphasized
by Hertz [24], is violated. Of course this shows quite clearly
that unlike to extensive thermodynamics the temperature
is not the appropriate control parameter in non-extensive
situations like, e.g., at phase separations, nuclear frag-
mentation, or stellar systems [25].

2.3.2 Lynden-Bell’s paradox

By the same reason the well-known paradox of Antonov in
astro-physics due to the occurrence of negative heat capac-
ities must be reconsidered: Lynden-Bell [26] uses standard
arguments from extensive thermodynamics that a system
a with negative heat capacity Ca < 0 in gravitational con-
tact with another b with positive heat capacity Cb > 0 will
be unstable: If initially Ta > Tb the hotter system a trans-
fers energy to the colder b and by this both become even
hotter! If Cb > −Ca, Ta rises faster than Tb and this will go
for ever. This is wrong because just the opposite happens,

the hotter a even absorbs energy from the colder b and
both system come to equilibrium at the same intermediate
temperature, cf. [25,27]. Negative heat capacity can only
occur in the microcanonical ensemble. Temperature is not
controlling the direction of energy (heat) flow when the
heat capacity is negative. This is controlled by entropy ac-
cording to the second law. Isothermal self-gravitating sys-
tems appear somehow paradoxical. Moreover, one cannot
argue, as for extensive systems, that S1+2 = S1 + S2 and
E1+2 = E1+E2 as discussed above. There are far-reaching
correlations between the two systems due to long-ranged
gravity.

In the thermodynamic limit N →∞ of a system with
short-range coupling the depth of the convex intruder
∆Ssurf ∼ N2/3, i.e. ∆Ssurf/N = ∆ssurf ∝ N−1/3 must
go to 0 due to van Hove’s theorem. Of course it is only the
specific surface entropy ∆Ssurf/N which disappears. As
phase separation exists also in the thermodynamic limit,
by the same arguments as above, the curvature of S(E)
remains convex, ∂2S/(∂E)2 > 0. Consequently, the nega-
tive heat capacity at phase separation should also be seen
in ordinary macroscopic systems in chemistry!

Searching for example in Guggenheims book [13] one
finds some cryptic notes in § 3 that the heat capacity of
steam at saturation is negative. No notice that this is the
generic effect at any phase separation!

It is interesting to notice that, if ordinary macro-
scopic thermodynamics is used in describing finite sys-
tems, artificial unphysical effects need to be invoked to
obtain negative heat capacities at first-order phase tran-
sitions [28]. Therefore, let me recapitulate in the next
subsection how chemists treat phase separation of macro-
scopic systems and then point out why this does not work
in non-extensive systems like fragmenting nuclei, at phase
separation in normal macroscopic systems, or large astro-
nomical systems.

2.4 Macroscopic systems in chemistry

Systems studied in chemical thermodynamics consist
of several homogeneous macroscopic phases α1, α2, · · ·
cf. [13]. Their mutual equilibrium must be explicitly con-
structed from outside.

Each of these phases are assumed to be homogeneous
and macroscopic (in the “thermodynamic limit” (Nα →
∞|ρα=const)). There is no common canonical ensemble for
the entire system of the coexisting phases. Only the canon-
ical ensemble of each phase separately becomes equivalent
in the limit to its microcanonical counterpart.

The canonical partition sum of each phase α is defined
as the Laplace transform of the underlying microcanonical
sum of states W (E)α = eSα(E) [29,30]

Zα(T ) =

∫

∞

0

eSα(E)−E/TαdE. (14)

The mean canonical energy is

〈Eα(Tα)〉 = −∂ lnZα(Tα)/∂βα,

βα =
1

Tα
. (15)
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In chemical situations proper the assumption of homoge-
neous macroscopic individual phases is of course accept-
able. In the thermodynamic limit (Nα → ∞|ρα=const) of
a homogeneous phase α, the canonical energy 〈Eα(Tα)〉
becomes identical to the microcanonical energy Eα when
the temperature is determined by

T−1
α = βα =

∂Sα(E, Vα)

∂E

∣

∣

∣

∣

Eα

. (16)

The relative width of the canonical energy is

∆E(T )α =

√

〈E2
α〉T − 〈Eα〉2T
〈Eα〉T

∝ 1√
Nα

. (17)

The heat capacity at constant volume is (care must be
taken about the constraints (!))

Cα|Vα =
∂〈Eα(Tα, Vα)〉

∂Tα
(18)

=

〈

E2
α

〉

Tα
− 〈Eα〉2Tα
T 2
α

≥ 0. (19)

Only in the thermodynamic limit (Nα → ∞|ρα=const)
does the relative energy uncertainty ∆Eα → 0, and the
canonical and the microcanonical ensembles for each ho-
mogeneous phase (α) become equivalent. This equivalence
is the only justification of the canonical ensemble con-
trolled by intensive temperature T , or chemical potential
µ, or pressure P . I do not know of any microscopic foun-
dation of the canonical ensemble and intensive control pa-
rameters apart from the limit. This is also the reason why,
e.g., the Clausius-Clapeyron equation as an equation be-
tween intensive variables is not applicable away from the
thermodynamic limit, e.g. in nuclei.

The positiveness of any canonical CV (T ) or CP (T ) is
of course the reason why the inhomogeneous system of
several coexisting phases (α1 and α2) with an overall nega-
tive heat capacity cannot be described by a single common
canonical distribution [4,31]. The inter-phase fluctuations
are ignored.

This new fundamental interpretation of thermo statis-
tics was introduced to the chemistry community in [32,33].

2.5 A remark on “non-equilibrium” thermodynamics of
small sytems

Prigogine quite clearly gives a short introduction into
the logical foundations of non-equilibrium thermodynam-
ics in [34]. The system is assumed to be composed by
small subsystems internally in thermodynamic equilib-
rium. Each one is itself macroscopic and homogeneous
that the conventional canonical Boltzmann-Gibbs statis-
tics applies. However, the individual subsystems are not
assumed to be in mutual thermodynamic equilibrium.
There are temperature and/or pressure gradients, there
may be a flow of the subsystems etc. Hydrodynamics
or heat conductivity are examples. Clearly, this is cer-
tainly not possible in small systems like atomic nuclei or

atomic clusters. Therefore, attempts to transfer macro-
thermo-dynamic concepts like temperature or Gibbs-free
energy G(T, P ) to nano-objects [35] like single biological
molecules and the exploration of Jarzynski’s equalitity [36]
must be considered with reservation cf. [37,38]. Tempera-
ture, and pressure are ill defined in such small objects [39].

3 Statistical fragmentation

3.1 Nuclear fragmentation

The new lesson to be learned is that if one defines the
phases by individual peaks in eS(E)−E/T in (12), then
there exist also inhomogeneous phases like in fragmented
nuclei or stellar systems. The general concept of thermo-
statistics becomes enormously widened.

However, before applying the microcanonical thermo-
statistics to nuclear collisions, a clarification is necessary:
Nuclear collisions are transient phenomena. Thus, a the-
ory of statistical nuclear fragmentation is an approxima-
tion to a dynamical process. This is well known and ap-
plies as well to the old Weisskopf theory of the statistical
decay of a compound nucleus. The scenario one has in
mind is that the emissions of fragments over the barrier is
so slow that all accessible exit channels are tested. This is
the open phase space at or on top of the exit barrier. In the
statistical fragmentation model MMMC [4] this is taken
care of by sampling all fragments under non-overlapping
conditions inside a “freeze-out” volume corresponding to
∼ 5 × V0 the volume of the nucleus in its ground state.
The average distance between neighboring fragments is
then about 2 fm. The experimental discovery of nuclear
multifragmentation by [40] and its theoretical interpreta-
tion by [3] was the clear recognition that within a time of
¿ 10−21 s several medium-sized fragments can cross the
decay barrier. This is much shorter than the time the frag-
ments need to come out of mutual Coulomb fields, a fact
discussed in detail in Chapt. 5.2.1 of my book [4].

At this point a clarifying comment must be made on
the paper Information theory of open fragmenting sys-
tems and its relevance for nuclear fragmentation [41] espe-
cially to the established statistical fragmentation models.
The authors write on p. 2: “More important, to specify
the density matrix, the projector PS (which projects on
the given boundary condition (my explanation)) has to
be exactly known and this is in fact impossible. The na-
ture of PS is intrinsically different from the usual global
observables Al. Not only it is a many-body operator, but
PS requires the exact knowledge of each point of the bound-
ary surface while no or few parameters are sufficient to de-
fine the Al. This infinity of points corresponds to an infi-
nite amount of information to be known to define the den-
sity matrix. . . the same is true for the standard (N,E, V )
ensembles when dealing with finite unbound unconfined
systems.” The (N,E, V ) ensemble of a bound system is
the most fundamental ensemble of statistical mechanics.
The treatment of the ideal gas in a box is one of the most
elementary exercises in statistical mechanics that can be
solved analytically. It is the paradigm of statistical me-
chanics and we should keep close to it as much as we can,
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Fig. 2. Atomic cluster fragmentation, see sect. 3.2.

when we are going to extend standard statistical mechan-
ics into the domain of systems far off the thermodynamic
limit. There is no infinity of information needed. Of course
the box potential must be included in the Hamiltonian
which characterizes the system under consideration.

In our MMMC model we have a very specific physical
picture in mind. It saves us not to enter dangerous new
grounds of “dynamical” statistical mechanics. Moreover it
gives us an idea why and how the system may explore sta-
tistically the whole accessible phase space. We took care
of the fact that the fragments are trapped for ≈ 100 fm/c
behind the Coulomb barrier. This can clearly be seen in
BUU dynamical calculations [4]. The Coulomb barrier de-
fines the freeze-out volume. The fragmenting system is
assumed to be in statistical equilibrium during this time.
So the ensemble imagined is a standard (N,E, V ) ensem-
ble and NOT some unbound unconfined system. Of course
this is a simplifying approximation to a much more com-
plicated dynamical situation. But judged from its great
success this is a very reasonable simplification.

Now, certainly neither the phase of the whole multi-
fragmented nucleus nor the individual fragments them-
selves can be considered as macroscopic homogeneous pha-
ses in the sense of chemical thermodynamics (ChTh).
Consequently, ChTh cannot and should not be applied

to fragmenting nuclei and the microcanonical description
is ultimately demanded. This becomes explicitly clear by
the fact that the configurations of a multifragmented nu-
cleus have a negative heat capacity at constant volume
CV [42,43], and further references therein, and also at con-
stant pressure CP (if at all a pressure can be associated
to nuclear fragmentation [4]).

The existence of well-defined and separated peaks
(phases, if distinguished by conserved control parameters)
in the event distribution of nuclear fragmentation data is
demonstrated in [44] from various points of view. This sig-
nal is in a small system like a nucleus by far more sophis-
ticated and detailed than the simple jumping from liquid
to gas in traditional macroscopic systems in chemistry. A
lot more physics about the mechanism of phase transitions
can be learned from such studies. This will be the topic
of the contributions by P. Chomaz, F. Gulminelli and by
O. Lopez and M.F. Rivet, as also by B. Tamain, to this
topical issue.

3.2 Atomic clusters

As there are several examples for nuclear multifragmenta-
tion in this paper I will show the analogous development
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of the fragmentation of a single charged cluster of 3000
Na atoms with rising excitation energy from the evapo-
ration of a few Na atoms over multifragmentation into
monomers, dimers up to 10-mers towards finally the total
vaporisation of the original cluster (see fig. 2). Notice that
this occurs all within the range of the backbending (i.e.
the negative heat capacity) of the caloric curve.

To compare with usual macroscopic conditions, the
calculations were done at each energy using a vol-
ume V (E) such that the microcanonical pressure P =
∂S
∂V /

∂S
∂E = 1atm. The inserts on the top of the figure

give the mass distribution at the various points. E.g., in
insert 1 the label “4:1.295” means 1.295 quadrimers on
average. This gives a detailed insight into what happens
with rising excitation energy over the transition region:
At the beginning (e∗ ∼ 0.442 eV) the liquid sodium drop
evaporates 329 single atoms and 7.876 dimers and 1.295
quadrimers on average. At energies per atom e & 1 eV the
drop starts to fragment into several small droplets (“inter-
mediate mass fragments”) e.g. at point 3: 2726 monomers,
80 dimers, ∼ 5 trimers, ∼ 15 quadrimers and a few heavier
ones up to 10-mers. The evaporation residue disappears.
This multifragmentation finishes at point 4. It induces the
strong backward swing of the caloric curve T (E). Above
point 4 one has a gas of free monomers and at the be-
ginning a few dimers. This transition scenario has a lot
of similarity with nuclear multifragmentation. The total

inter-phase surface area ∝ N
2/3
eff =

∑

iN
2/3
i with Ni ≥ 2

(Ni the number of atoms in the i-th cluster) stays roughly
constant up to point 3 even though the number of frag-
ments (Nfr =

∑

i) rises monotonically. Notice, the caloric
curve between point 1 and 2 looks like the “compound
nucleus for ever” proposed by [45], though the tempera-
ture is higher than Ttr and the decay is not evaporation
for ever. In contrast to claims in [45] the phase transiton
finishes with considerable multifragmentation and a deep
back-bend of the caloric curve T (E).

3.3 Fragmentation of astrophysical systems

Self-gravitation leads to a non-extensive potential energy
∝ N2. No thermodynamic limit exists for E/N and no
canonical treatment makes sense. At negative total ener-
gies these systems have a negative heat capacity. This was
for a long time considered as an absurd situation within
canonical statistical mechanics with its thermodynamic
“limit”. However, within our geometric theory this is just
a simple example of the pseudo-Riemannian topology of
the microcanonical entropy S(E,N) provided that we re-
strict to densities ≤ the density of normal hydrogen burn-
ing stars, i.e. to ordinary visible stars. We treated the
various phases of a self-gravitating cloud of particles as
a function of the total energy and angular momentum as
shown in fig. 3. Clearly, these are the most important con-
straints in stellar physics. The necessity of using “exten-
sive” instead of “intensive” control parameter is explicit in
astrophysical problems. E.g., for the description of rotat-
ing stars one conventionally works at a given temperature

Fig. 3. Contour plots and density profiles of a rotating, self-
gravitating N -body system showing the formation of a stable
double cluster (left) and an unstable ring (right) at different
energies. The double-cluster structure illustrates the sponta-
neous breaking of rotational symmetry at intermediate energy
and high angular momentum (from [47]).

and fixed angular velocity Ω, cf. [46]. Of course in reality
there is neither a heat bath nor a rotating disk. More-
over, the latter scenario is fundamentally wrong as at the
periphery of the disk the rotational velocity may even be-
come larger than velocity of light. Non-extensive systems
like astro-physical ones do not allow a “field-theoretical”
description controlled by intensive fields!
E.g., configurations with a maximum of random energy

Erandom = E − ΘΩ2

2
− Epot (20)

and consequently with the largest entropy are the ones
with smallest moment of inertia Θ, compact single stars.
Just the opposite happens when the angular momentum
L and not the angular velocity Ω are fixed:

Erandom = E − L2

2Θ
− Epot. (21)

Then configurations with large moment of inertia are max-
imizing the phase space and the entropy. I.e. eventually
double or multistars are produced, as observed in reality.

In fig. 4 one clearly sees the rich and realistic micro-
canonical phase diagram of a rotating gravitating system
controlled by the “extensive” parameters energy and an-
gular momentum [47].

3.4 Outlook

It is a deep and fascinating aspect of nuclear fragmen-
tation: First, in nuclear fragmentation we can measure
the whole statistical distribution of the ensemble event by
event including eventual inter-phase fluctuations. This is
interesting as the character of the distribution, deeply bi-
modal vs. energy or more equal, tells about the constraint
in the experiment, e.g. by temperature (unlikely) or by
energy. Not only their mean values are of physical inter-
est. Statistical mechanics can be explored from its first
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Fig. 4. Phase diagram of rotating self-gravitating systems in
the energy angular-momentum (E,L)-plane [47]. DC: region
of double stars, G: gas phase, SC: single stars. In the mixed
region one finds various exotic configurations like ring systems
in coexistence with gas, double stars or single stars. In this
region of phase separation the heat capacity is negative and
the entropy S(E,L) is convex. The dashed lines E − L = −1
(left) and E = L (right) delimit the region where systematic
calculations were carried out.

microscopic principles in any detail well away from the
thermodynamic limit. By our studies of nuclear fragmen-
tation we found [30,31] the very general appearance of a
negative heat capacity and the necessary convexity of the
entropy S(E) at any phase separation which seems to be
little known in thermodynamics. Clausius’ version of the
second law “heat always flows from hot to cold” is in gen-
eral violated at any phase separation even in macroscopic
systems.

In nuclear fragmentation there may be other conserved
control parameters besides the energy: e.g. in the recent
paper by Lopez et al. [48] a bimodality in the mass asym-
metry of the fragments is demonstrated to be controlled
by the transferred spin and not by excitation energy. This
is an interesting, though still theoretical, example of the
rich facets of the fragmentation phase transition in finite
systems which goes beyond the liquid-gas transition and
does not exist in chemistry. Angular momentum is a very
crucial control parameter in stellar systems.

Second, and this may be more important: For the
first time phase transitions to non-homogeneous phases
can be studied where these phases are within themselves
composed of several nuclei. This situation is very much
analogous to multistar systems like rotating double stars
during intermediate times, when nuclear burning prevents
their final implosion. The occurrence of negative heat ca-
pacities is an old well-known peculiarity of the statis-
tics of self-gravitating systems [26,49]. Also these can-
not be described by a canonical ensemble. It was shown
in [21,27] how the microcanonical phase space of these
self-gravitating systems has many of the realistic con-
figurations which are observed. Of course, the question
whether these systems really fill uniformly this phase
space, i.e. whether they are interim equilibrated or not is
not proven by this observation though it is rather likely.

Microcanonical thermostatistics is proven to give a re-
alistic, objective picture of a broad scenario of real phys-
ical phenomena, much broader than conventional canon-
ical thermodynamics. Moreover, one of the original ob-
jects of thermodynamics, the description of the liquid-gas
phase separation in steam engines, can now be understood
within statistical mechanics.

I am very grateful to Francesca Gulminelli and to Wolfgang
Trautmann for many helpful comments that improved this
manuscript.
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